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Abstract—An analytical technique is presented for the prediction of non-steady void and enthalpy

distributions in forced convection flow-boiling water. The analysis is based on the cross section averaged

form qf the mass and energy conservation equations. Auxiliary relations, based on a local condition

hypothesis, have been developed to describe (i) the effect of non-uniforin void and velocity profiles and

(ii) the vapour generation rate. Predictions of steady flow axial void distributions are shown to be in good

agreement with the available data, as are predictions of void oscillation amplitude and phase lag for
modulated heat flux data.

NOMENCLATURE R, pipe radius;
A, cross section area; Re, Reynolds no. = pu,D,/u;
Co, = (aw)i{ay {v); T, temperature ;
Cy =1 = aipiKl — oy iy AT =TL-T,
Cy = = uip/K(1 — oy i) t, time ;
Cp liquid specific heat ; v, velocity ;
D, equivalent diameter ; v, dimensionless distance from the wall
A frequency; = J/R;
h, heat transfer coefficient ; zZ, axial position;
B = o fhoA: Sz, =mbif p,
i, enthalpy; o, vapour volume fraction;
i*, = (i, — i)/Ai; Aw,,, peak-to-peak void amplitude;
Ai, evaporation enthalpy = (i, — i/); r, vapour generation rate;
Ai,, inlet subcooling = i, — i ; r,, = §" p,/AAI;
k, liquid thermal conductivity ; iy density;
m, mass flux; Ap, =P~ Pv;
P, pressure ; U, liquid viscosity ;
Pr, liquid Prandtl no.; w, angular frequency;
P’ heated perimeter; P, angular phase lag;
¢, heat flux; E, = (4" — 4o)/4s.
Subscripts

+ Presently visiting professor: Centro Tecnologico, Uni-
versidade Federalde Santa Catarina, Brazil. b, bubble layer;
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¢, center line;

£ saturated liquid;

g, saturated vapour;

h, heated portion of channel;

iy channel inlet;

l, liquid ;

0, position of significant vapour forma-
tion or steady-state value;

S, saturation condition;

v, vapour ;

W, wall.

Superscripts
*, dimensionless length w.r.t. z,;

*, dimensionless length w.r.i. z;:

’ dimensionless length w.r.t. D,.
1. INTRODUCTION

THE PREDICTION of non-steady phenomena in
forced convection flow boiling systems is of
considerable importance in nuclear reactor
design. The response of the volumetric concen-
tration of the liquid and vapour phases due to
perturbations in heat flux and inlet flow is of
particular interest due to its influence on the
neutron dynamics. The present paper presents
an analytical technique for the prediction of the
void response to specified perturbations in heat
flux and inlet flow. ,

Various authors have presented void-
distribution prediction methods, e.g. the methods
reported in [1-6]. In all cases one or more of the
following are assumed :

(i) one-dimensional flow

(ii) axially uniform heat flux

(iii) temporally uniform heat flux

(iv) steady inlet velocity

(v) linearized conservation equations, and
(vi) thermal equilibrium between the vapour
and liquid phases.
The present method includes none of the above
restrictions.

The analysis most closely related to the present
work is that presented by Zuber and Staub [3].
They have presented a comprehensive analysis
of the void response to both heat flux and inlet
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flow modulation assuming negligible inertial
effects, thermal equilibrium between the phases,
and incompressible phases. Further, they
assumed that the effects of non-uniform void and
velocity profiles did not vary axially. Under
these assumptions the void response is com-
pletely defined by a void propagation equation
for which closed form solutions exist. The
present authors have extended this analysis to
consider flows having non-zero inlet subcooling,
i.e. flows for which the assumptions of thermal
equilibrium and fully developed void, velocity
and enthalpy profiles are not valid. In this
analysis the mass and energy conservation
equations are phrased in the form of a void and
an enthalpy propagation equation which in-
corporate a function describing the local vapour
generation rate and distribution parameters to
represent the effects of radial distributions of
void, velocity and enthalpy. The vapour genera-
tion has been developed employing a simple
physical model similar to that presented by
Larsen and Tong [4]. At present both a physical
model and systematic experimental data to
determine the complete dependence of the
distribution parameters on local conditions are
not available. In this analysis the void-velocity
distribution parameter relation developed in [6]
has been adopted, except where otherwise noted,
and all other distribution effects have been
neglected. Both the vapour generation function
and the void-velocity distribution parameter are
assumed to depend only on local instantaneous
properties. An implicit finite difference scheme
has been employed to solve the governing
equations.

The accuracy of the numerical solution is
demonstrated by comparison with a closed
form solution. Comparisons of predictions with
the steady-state axial void distributions
presented in [2, 7-11] and the transient void
distributions presented by St. Pierre [2] for heat
flux modulation show good agreement.

2. DERIVATION OF THE GOVERNING EQUATIONS
2.1 The void and enthalpy propagation equations
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For a differential length of channel the cross
section averaged mass and energy conservation
equations are as follows. The continuity require-
ment for the vapour phase may be written as

<apv> + <apu u> = <F> (1)

where (I") = vapour generation rate

1
{ > denotes the operatorZ f()da
LA
Similarly, the liquid phase continuity equation is
i) 0 .
=1 =ap) + K —)ppp = —<I>. (2
ot 0z

At present there are insufficient experimental
data to support a detailed description of the
interphase energy transfer mechanisms. The
need for this detailed description is avoided
through the use of the mixture energy equation
which has the following form

0 i,
il i 1 — ] =
6t <apvlv + ( (X) plll> + 82 <apvvvlv

”

qp
Ah )]

+ (1 — Jpwiiyy =

The interphase energy transfer will be introduced
later in the form of a semi-empirical vapour
generation equation, based on a highly simplified
physical model.

In the following derivations we will make use
of the simplifications listed below:

(i) the vapour and liquid saturation properties
will be assumed spatially and temporally in-
variant.

(ii) zero local drift between the phases will be
assumed; i.e. at a point the liquid and vapour
velocities will be assumed equal although the
average cross section velocities may not be.

It is appropriate to note that these simplifying
assumptions, while not necessary, yield a
tractable system of equations and appear reason-
able for most applications of interest. The
former assumption may be replaced with
equations of state and the momentum conserva-
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tion equation. A relation describing the local
relative velocity between the phases is required
to remove the latter assumption.

First consider the continuity equations.
Addition of (1) and (2) gives

4)

Equation (4) can be integrated to obtain the
following expression for the axial velocity
distribution

{v) = vft) + JAP<F> dz
0

5)

We

The vapour continuity equation, equation (1),
may be expanded to obtain

0 0 0

A O A RO
IROROR Rt

where

Co = {avp/<a o).

Employing equation (4) and rearranging the
above equation becomes

0 oC
X0 4 o B2+ @y 2
~|1- e 2|2 o

An examination of steady flow data [6] indicates
that the distribution parameter, C,, can be
considered, for a given geometry and at moderate
to large mass velocities to be a function of the
average void {o);

9Cy _ 8Cy 3o
0z~ a) 0z

Upon substitution of this result, equation (6)
may be written in the form

o<ay Koy
o g — %

(N
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where

v, = {Co e ><oc>] (o

2, - [ Coca >@]<F>

Equation (7), we observe, has the form of a
propagation equation. Zuber and Staub [3], as
noted above, have presented solutions for a
thermal equilibrium flow and C, = constant;
conditions for which (7) is linear (see Appendix I).
For the special case of an adiabatic flow
(Q, = 0)and C, = constant, equation (7)reduces
to a homogeneous linear equation which states
that void disturbances are propagated at the
velocity ¥, without change in shape.

Next consider the energy equation for the
mixture. In the following we will assume that the
vapour is at saturation. Experiments [12, 13]
indicate that this assumption is valid in the
subcooled region, however, it is appropriate to
observe that it will become less valid, due to
vapour super-heating, as the void approaches
unity, although it appears that solutions are not
appreciably influenced. With this assumption
and substitution of equation (1), we can write
equation (3) in the form
0,

5 <

il
a) piipy + 7 {1 = ) pwiipy

Q.Dh
iy, ®)

It is convenient to introduce the following
distribution parameters

e iy 9
e =) (0
AL — v

C = = Doy i

Upon substitution of these parameters, equation
(8) can be rearranged to obtain

0<t,> <l:>

Cil —o

+ Co(l — Colad) vy
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- €<y S22 0,0,y EY

Cocory) B2 4 PR <Y

+ Cy{l — .
0z piA “

Employing equations (2) and (4) with the
assumption C, = C,({a)), the above equation
can be rewritten as

e . a
b‘t<ll> + V,£<h> =40 (10)
where
Ol = Ol <o
' Ci(1 — (o))
(¢" 2/ ) — i, — GOIKD [(C0
@ = CipLl —a) +|:(61 1)
Ap 1 i <D
1-C —
( o) P - C, ]P:(I -
(B2 (G kW
(3(0() ) (1—0()] p Oz

It is also convenient to introduce the following
dimensionless enthalpy

o _ i i
Al

Equation (10) becomes
oi* V&i*

PG P
L — (1 + KT )
Cipi {1 = o) * [(Cx !

A 1-C r
-G+, . =5

oC, C, Vo | i o)
+[C25<‘1>+( ¢, 1)<1—°‘>]P

aF (11)

pAi 0z

For C, and C, equal to unity, approximated at
low subcooling where the radial distribution of
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i) is nearly uniform, equation (11) becomes

ai* (1= Coka) <o) di*
ot - oz
r, -0+

12
ol = ay 12

2.2 Vapour generation function

To determine the appropriate form for the
vapour generation function, consider steady-
state flow in a circular tube as presented in
Fig. 1. The single-phase region will extend to the
point z,, at which the wall temperature first
reaches saturation, beyond z, bubbles may form
at the wall. The presence of bubbles increases
the effective conductivity in the near wall region
and hence reduces the resistance to heat transfer
through the bubble layer to the liquid core. In
this region of attached void the heat flux that
could be transferred to the liquid core, g, based
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on the effective conductivity and mean liquid
subcooling with the “edge” of the bubble layer
at the saturation temperature, is greater than
the specified wall heat flux, hence vapour
formation is suppressed. As the fluid progresses
downstream the liquid subcooling is further
reduced resulting in a reduced potential heat
flux §;. When the effective thermal conductivity
at the outer edge of the bubble layer is no longer
sufficient, given the existing temperature
gradient, to remove the specified heat flux, ¢,
vapour generation must begin. This point will be
denoted by z,. Thus upstream of z, the vapour
generation is effectively zero. At the other
extreme, as the liquid enthalpy approaches
saturation a thermal equilibrium state is ap-
proached and the vapour generation rate is a
simple function of the local heat flux and
evaporation enthalpy defined explicitly by the
energy equation.

Based on the postulated physical events

keffc ke(fc keffc
1 e S : N . e - .
Smgle{ Region of Region of significant { cre e /2
phase f‘?:ncchea ™void D ; %, ‘l! SE2 /7
region‘ void s,
o r_—_.. r-—i-— l—_
Z, ——k)<_ —=] keﬁl_._ * *‘ *ef‘lf_
Schematic diagram of the flow regions s o
Effective thermal conductivily distribution
2R N 9 =9,
< a> r N N
BN AN
q., 7, Zom‘;
t.ocal heat flux distribution
7 A
° = s
L 2= +
Tm p
7 i i ! ] f-— I -] |
! s Zo < ?: Z. s Z > 75t

Axial temperature variation

Radial temperature profiles

Fi1G. 1. A simplified model for the subcooled region.
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upstream of z, an analysis [6], employing
logarithmic velocity and temperature profiles
and a turbulent Prandtl number of unity in the
liquid core, yields the following relationship
defining the position of significant vapour
formation

F

+
ZO =1“‘Z',‘.
1

(13)

The function F has been determined by examin-
ing the available experimental data [2, 7-11] the
following form has been found to adequately
represent the data

F = 0624 (Re)*3%.
We note that, since z§ can be expressed as

AT,

% =1-37

the following heat transfer coefficient is implied

(14)

hy = O‘4OD£(Re)°'“’2 Pr.

For the region downstream of z, consider the
separated flow model shown in Fig. 2. Assuming

. . B
L Liquid
b . core
I + 9%
1 ot
j . Vapour
* m, 4 layer
e |
e
dz

Fi16. 2. Separated phase model employed to determine the
form for the vapour generation function.

that the vapour-liquid interface is at the
saturation temperature the conservation
equations for an infinitesimal control volume
enclosing the vapour layer are;
(i) continuity

R

d § pu2mrdr = 2nrgm)

i (15}

s
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where m, = liquid mass flux across the phase
interface

{ii} energy

d R

a;f Pigv2nrdr — 2mryii,
ry

= 2n(Rq,, — rydy)- (16)

Substituting equation (15) into (16) we obtain

the following expression for the mass rate of

vapour generation per unit area of the interface
.. 4w — (n/R)gy

m, = -
i (ry/R)Ai

The above expression may be rewritten in

terms of cross-section averaged variables as

44, A
22— (1 -] 17
DA [ (1 -0 i (17)
The heat transfer to the liquid core g; is assumed

proportional to the local liquid subcooling,
such that

) =

& =iy - i) (1)
(’P

where h is an appropriate heat transfer co-
efficient. For the present we will assume that
h = hy everywhere in the boiling region; this
assumption has been successfully employed by
Ahmad [5]. We note that this assumption is
also probably invalid as the void approaches
unity. It does not, however, influence the
calculations since i, approaches i, as the void
approaches unity. Employing equations (14),
{17) and (18} and the observations presented
above for z < z,, the vapour generation rate
will be represented by the following piece-wise
continuous function

(Y =T,[1 — (1 — a)Fi*/h*] i* < h*
(> =0 i* > h* (19)
where

h* = c,gu/hoi
I, = 4q./DAi.
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Equation {19) displays the appropriate
asymptotic behaviour, since {(I") approaches the
thermal equilibrium generation rate I',, as the
liguid subcooling i* approaches zero. We note
that the (I — a)* multiplier results from the
assumption that vapour-liquid interface area is
proportional to (1 — «). While this is an
approximation it does lead, when combined
with the assumption of a constant heat transfer
coefficient, to an exponential variation of mean
liquid temperature such as has been observed by
Staub [12].

2.3 Distribution parameters

As noted above, a consequence of employing
the cross section averaged form of the conserva-
tion equation is that it is necessary to introduce
distribution parameters to represent the effects
of nonuniform radial void, velocity and enthalpy
profiles. The following distribution parameters
have been introduced above

Co = {awp/{ay {v)
C, =< ~gip/Kl —ay<ip
Cy =1 — oip/(1 — ooy iy

At present we lack both a physical model and
systematic experimental data from which the
complete dependence of C,, C, and C, on the
parameters of interest could be determined.
There is, however, some experimental evidence
{12, 13] to suggest that the liquid enthalpy
profiles may be assumed uniform, within the
present range of interest, and hence we will set
C, = C, = 1. It is pertinent to note that this
assumption has been successfully employed in
steady flow analyses [6, 14]. The influence of the
parameter C, has been studied in some detail by
Zuber et al. [14, 15] and the present authors [6].
It is to the evaluation of an empirical relation
for C, that we now turn.

To evaluate C, we require radial distributions
of void and velocity. Unfortunately simultaneous
measurements of developing void and velocity
distributions are not available. However, radial
void distributions for steady flow have been
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presented by St. Pierre [2]. These can be used in
conjunction with realistic hypothetical velocity
profiles to obtain the axial variation of C,.
Figure 3 shows the axial variation of C,

o) 2 R SR

ae
/ Ayt
+o [“ P
N

& .
%o ¥ Equation (20) Run
COS =19, C02= 0-2 . |
05 * 2
. 7
A i0
\ I ! |
o1 02 03 04

<a>

F1G. 3. Axial variation of C, for St. Pierre’s data [2].

evaluated assuming power-law profiles of the
form:

& — e +yn
aw“ac_(y)

v""UC

- = -

Ue

Values of n have been obtained by a least
squares fit of the void power-law profile to the
data, and the power m such that

m=Tfora, >0

m = nfora, = 0.

Arguments justifying the use of similar void
and velocity profiles have been presented by
Zuber et al. [14]. The resulting axial variations
of C, are consistent with what we would expect.
It is easy to argue, from the definition, that C,
must have a near zero value at the start of the
significant void region, since in this region the
void is concentrated in the low-velocity near-
wall region. At the other extreme C, must
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approach unity as the average void approaches
unity. Values of C, > 1 at intermediate values
of (&) are consistent with Bankofl’s [ 16] observa-
tion that bubbles tend to concentrate in the
high-velocity tube-center region after some
development length.

In the present work we have adopted the
following function which embodies the above
behaviour

_ 1 —exp(=Cou)
7 1 —exp(—Cyy)
where C, and C,, are constants determined to

obtain the best fit to the experimental data. The
values obtained for St. Pierre’s data are

CO] = 19
COZ = 02

(1 + Cos) — Coz (20)

It is appropriate to observe here that some
disagreement eXists between the values of Cy,
obtained from the data of various investigators.
In another more extensive study [6] the present
authors found that the best overall predictions
for the steady-state void-distribution data of six
investigators [2, 7-11] were obtained with

Co, = 1'164 — 114 x 1073P + 0-357

x 107°P2.  (21)

It appears that these differences may be due
to geometrical peculiarities of the individual
apparatuses, and thus we have set C,, = 02
when comparing predictions with St. Pierre’s
data and equation (21) has been employed in all
other cases. The consequences of this procedure
will be examined in greater detail below.

2.4 Method of solution

Axial void and enthalpy distributions can be
obtained by the simultaneous solution of
equations (7) and (8), the void and enthalpy
propagation equations, subject to the following
boundary and initial conditions:
(i) heatflux,q” = §'(t. 2)
(i) inlet velocity, v, = v{1)
(iii) inlet subcooling, AT, = AT(t).

W. T. HANCOX and W. B. NICOLL

In the present analysis the auxiliary relations
defining the distribution parameter, C,, and the
vapour generation rate, {I"), are functions of the
local void and enthalpy. Hence the void and
enthalpy propagation equations are non-linear
and an implicit finite difference solution has
been employed; this solution form is described
in detail in Appendix II. The implicit finite
difference scheme can be shown to be inherently
stable for more simple forms of the propagation
equation [17] and hence is appropriate for the
present application.

The accuracy of the numerical technique is
demonstrated by comparison with a closed form
solution of the void propagation equation
presented by Zuber and Staub [3]; the peak-to-
peak void amplitude and phase lag for heat flux
modulation are presented in Appendix 1. Com-
parisons of the void wave form and the peak-to-
peak void amplitude are shown in Fig. 4. For

05k Equation I-5
O.4W

+ Numerical solution

A 03
s Z, /AZ=40
v L
o t/Br=40
i Z, /D, =22
[eR]=
Toin
1 i i
i 2 3 4
(a} Void wave form Time, s

Numerical solution

014
012\

+Z%10
Ol~\*\ _Equation1-8 205
\</
& ¥ - E ¥,
an o8 \‘
< oosk N\,
0041 ¥,
Q.OZT M /+><::*\+ ;/""""‘""-\
P W
VAR
i 2 3 4

Frequency, Hz

(b} Peak-to- peak void amplitude vs. freguency

Fic. 4. Comparison of the numerical solution with a closed
form solution.
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this particular application excellent agreement
between the numerical and closed form solutions
was obtained for space and time step sizes
selected such that,

Az < z,/20
At < /20

where 1 = minimum of 1/f or z,/v;

3. COMPARISON OF PREDICTION WITH
EXPERIMENT

Two classes of experimental results will be
examined: axial void distributions for steady
flow and axially uniform heat flux; and axial
void distributions for steady flow with modulated
heat flux. The former class was chosen in spite
of its restricted nature because of the large
amount of available experimental data covering
a wide range of flow, pressure, heat flux, and
subcooling. Comparison of experiment with
prediction will allow the evaluation of the
accuracy and generality of the vapour generation
function and the distribution parameters. The
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modulated heat flux data were chosen to test
the prediction scheme for non-steady conditions.

3.1 Axial void distributions for steady flow and
uniform heat flux

Predicted void distributions have been com-
pared with 96 experimental distributions given
in [2, 7-11]. Table 1 summarizes the range of
geometric and experimental conditions included.
Typical comparisons are shown in Figs. 5-10.

It may be seen that the predictions are
generally good. There is no systematic variation
of error with any of the experimental conditions.
This satisfactory result implies that the vapour
generation function and the distribution para-
meters employed are adequate over the wide
range of conditions examined.

The overall root-mean-square error for all 96
comparisons was 5 per cent, an amount probably
nearly equal to the experimental scatter and an
amount equal to or less than the root-mean-
square error obtained with available steady flow
uniform heat flux void prediction techniques
[18].

Table 1. Range of steady-state data examined

Rectangular test sections

No. of Heat flux ressure Inlet Inlet
Author data Btu/sft? > press velocity,  subcooling, Flow Heated
points /s psta ft/s °F area, perimeter,  Length
in.2 in.

27 1200 2 50

Maurer 12 ! l l 1 0-088 1-88 27
170 2000 6 300
5 163 1 3

Marchaterre 30 1l l 1l 1 05 4.5 60
25 615 6 20
30 700 9 12

Foglia 35 l l ! 1 0-050 21 27
120 1300 18 112
11 35 6

Egen 14 ! 2000 l ! 0-103 221 27
110 6 194

6 200 25 05

St. Pierre 10 1 l 1 l 076 437 50
25 800 40 13
18 400 2-5 6

Christensen 6 | l l ! 0-76 4-37 50
44 1000 40 23




1386

void fraclion

Void fraction

Void fraction

void fraction
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P =200 psia
g" =63 Btu/s ft?
o8k V¥, =3-8 ft/s
o6l AT =-05°F
04t 602=o.2 ot e
et
o2 2 - )
- J&Zlfrorln equation (21)
02 04 06 08 1o
7
£ =300 psia
¢" =63 Btuss 12
OB ¥ =25 fi/s
o6k Arl ={-8°F
04+ e ——
R
o2 ;+"+:"+'__
+‘+¢d’
| ) ] L 1 i L J L J
o2 04 06 08 -0
Z*
F1G. 5. Predictions for St.
£ = 2000 psia
[ ¢" =1l Btuss ft°
o8k VvV, =46 ft/s
= °
oek BT =194°F
o4l +
-
o-2f 4
i i ! { s yl 1 FON
o2 G4 0-6 08 -0
7+
P =2000 psia
¢" =833 Btuss ft?
OBy, =6ft/s
ok AT-52°F
04
o2
i ! L
02

£ =400 psia
- ¢" =19 Btuss ft°
g o8k ¥, =38 ft/s
o =1
S oel Ar=t2eF
e
© o4f gttt
o ot
> ol ok
el
gl | | | i | S SR I S
02 04 06 08 -0
7
P =800 psia
- ¢ =253 Btuss f1°
£ 08F 1 =38 fis
° -3
E 06+ AK=4'2 F
=
he) .
2 0-4f- T —F
+
> o2 + + *
+
I B L1 " L L J
02 0-4 06 08 10
7+
Pierre’s data {2}
£ = 2000 psig
¢"=556 Btuss f1°
S o8l w.=48fts
= ot
o AT =8°F Lt =
o 06 ’ + +
S
.- +
© o-af +/+
g o2
i l i i i L1 ! A o}
02 0-4 c-6 08 10
7+
P =2000 psia
g" =556 Btuss 12
c
o OB Kk =59ft/s
5 . e
S osl AT :12°F | bttt
< ‘(4’/
o 04 Lt
o
> o2 /+/+
S
! Lo i | s | L }
0-2 0-4 06 o8 -0
7

FiG. 6. Predictions for the data of Egen et of. [8].
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Void fraction

Void fraction
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P =400 psia £ =800 psia .
¢" =186 Btus/s 12 g" =31 Btu/s ft
osl v, = 252 ft/s S o8k ¥, =38 ft/s
AT = 56 °F s AT = 6°F +
ost ' - — g o8 s
ot T S 04 =
. . .y . .
04 P + + ) ’+’+/
ozt g S o2t 4 ¥
+
K S N VS S N Y N T R H R S N B T
oz 04 o6 08 10 02 04 06 o8 10
z* P
F =800 psia £ =1000 psia
| ¢" =436 Blu/s 112 §" =436 Btuss f1°
o8 ¥, =37 ft/s S osf v, =37 f/s
016_ A?/-=22‘6 °F / ’ ’g 0'6'; Ar[ =21.8 °F /
" i
o4 M"‘"A * 04} e TF
ot b4 Tt
oz et $ o2t Tt
-t +
A N S SR ¢ LA O SR R
o2 04 06 o8 10 02 04 06 08 10
z* zi
F1G. 7. Predictions for Christensen’s data {11].
£ =1200 psia £ =1200 psia
g' =166 -4 Btu/s f12 e g" =55Blu/s 12
o8| Z, =35 /s Pt S o8f v, =26 ft/s
7. .0° = 2 137.0° —
osl A7 -3010°F / S oef AT =137-0°F P
+ W
04t / oaf +}/
3 /
ook / S o2k +
. 7
- [V IS ST R ) I B | IR S |
02 04 06 08 10 02 04 o6 o8 10
Z* Z*
P =1200 psia P =600 psio
T §* =964 Bru/s ft? _ 2" =830 Btu/s f1°
bt 3
o8k ¥, =36 fi/s e 2 o8k ¥, =60ft/s G et
<l AT =50°F .+~ 3 AT = 57-2°F +
06 +/ o 0-8H i
7~ "— + gt
04 T o4} +/
g w7
i i i L i ] I i 1 1 { I { 1 ! 3 §
02 0-4 06 o8 10 02 o4 06 08 [}
Z* za-

FiG. 8. Predictions for Maurer’s data {7).
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As noted in section 2.3 above, there exists an
apparent discrepancy between the ““best overall”
value of C,, and that obtained from St. Pierre’s
data [2]. The consequence of this discrepancy
for steady flow and uniform heat flux can be
seen in Fig. 5. We observe that the low pressure
predictions are somewhat improved if the
modified value of C,, is used ; at higher pressures
the change is negligible. We may conclude that
the steady state axial void distribution prediction
is relatively insensitive to this modification
although, as demonstrated in the next section,
this insensitivity is not likely to extend to non-
steady conditions.

3.2 Axial wvoid distributions
modulation

Predicted peak-to-peak void amplitudes and
phase lags at specified axial positions, for a
10 per cent peak-to-peak sinusoidal heat flux
variation, are shown in Figs. 11-16. The data
are those obtained by St. Pierre [2].

Again it may be observed that agreement
between prediction and experiment is satis-
factory; the dependence of both the void
amplitude oscillation and the phase lag on the
frequency of the heat flux modulation appear to
be adequately represented, particularly at the
lower frequencies. At higher frequencies the
agreement is less satisfactory. It is in this region,
however, that the void oscillation amplitudes
are small and hence the experimental un-
certainties in both amplitude and phase-lag are
large.

It is of interest to examine the effects of the
inclusion of the non-linear terms in the conserva-
tion equations by comparing the present results
with the analytical results presented in Section
2.4. The effects are two: first, the minima in the
amplitude—frequency plane no longer have the
value zero; secondly the phase lag—frequency
relation is no longer linear and the frequencies
at which the lag equals integral multiples of = do
not correspond to the frequencies at which the
amplitude—frequency relation displays minima.

The effect of the use of the modified value of

with heat flux
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C,, is also shown in Figs. 11 and 12. It appears
that the location of the amplitude minima, the
amplitude values, and the phase lag variation are
significantly affected by this modification at low
pressures. At higher pressures the C,, values
obtained from the general expression [equation
(21)] are comparable to the modified value;
hence at higher pressures the results may be
expected to be less sensitive to this modification.
We conclude that caution should be exercised
when attempting to predict non-steady void
distributions in other geometries for which the
distribution parameters may be expected to be
different. Further, the present results indicate
that the examination of non-steady void data
may be a useful, if indirect method for the
determination of the distribution parameter C,,.

4. SUMMARY

An analytical technique has been presented
for the prediction of non-steady void and
enthalpy distributions in forced convection flow-
boiling water. The analysis is based on the
cross-section averaged form of the mass and
energy conservation equations. Auxiliary rela-
tions have been developed to describe (i) the
effect of non-uniform void and velocity profiles
and (ii) the vapour generation rate. At present
these relations depend only on local instantane-
ous properties. An implicit finite difference
scheme has been employed to solve the governing
equations.

The accuracy of the numerical solution
technique has been demonstrated by comparison
with a closed form solution. Predictions of axial
void distributions for steady flow and axially
uniform heat flux demonstrate the adequacy of
the auxiliary relations. An overall root-mean-
square error for 96 axial distributions of 5
per cent has been obtained ; an amount probably
equal to the experimental scatter and equal to or
less than the root-mean-square error obtained
with available steady flow prediction techniques
[18]. Predicted peak-to-peak void amplitudes
and phase lags, for a sinusoidal heat flux
variation, are shown to agree satisfactorily with
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Pierre’s data [2]. A strong dependence of the

non-steady void predictions on the void-velocity
distribution parameter is indicated.

The available non-steady data do not provide

a stringent test of the local conditions hypothesis
employed in the development of the auxiliary
relations. Further model developments require
more extensive non-steady data.

ACKNOWLEDGEMENT

The authors wish to express their thanks to the Advanced
Engineering Branch of Atomic Energy of Canada Limited,
for permission to publish the analytical work described in
this paper.

10.
1L
12.

13.

14.

REFERENCES

. 1. L. Hupson, K. M. ATiT and S. G. BANKOFF, Response
of a boiling channel to power of inlet flow modulation,
Chem. Engng Sci. 19, 387-402 (1964).

. C. C. St. PierRE, Frequency-response analysis of steam
voids to sinusoidal power modulation in a thin-walled
boiling water coolant channel, ANL-7041 (May 1965).

. N. Zuser and F. StAauB, The propagation and the wave
form of the vapour volumetric concentration in boiling,
forced convection system under oscillatory conditions,
Int. J. Heat Mass Transfer 9, 871-895 (1966).

. P.S. LArsEnand L. S. TONG, Void fractions in subcooled
flow boiling, J. Heat Transfer 91, 471-476 (1969).

. 8. Y. AuMap, Axial distribution of bulk temperature and
void fraction in a heated channel with inlet subcooling,
Unpublished A.E.C.L. report (1969).

. W. T. Hancox and W. B. NicoLt, Forced convection
boiling; prediction of axial void distributions. Sub-
mitted for publication in the Can. J. Chem. Engng (1970).

. G. W. MaAURER, A method of predicting steady-state
boiling vapour fractions in reactor coolant channels,
WAPD-BT-19 (1956).

. R. A. EGEN et al., Vapour formation and behaviour in
boiling heat transfer, Battelle Memorial Institute
Report BMI-1163 (February 1957).

. J. J. FoGLIA et al., Boiling-water void distribution and

slip ratio in heated channels, Battelle Memorial

Institute Report BMI-1517 (May 1961).

J. F. MARCHATERRE et al., Natural and forced circulation

boiling studies, ANL-5735 (May 1960).

H. CHRISTENSEN, Power to void transfer function

ANL-6385 (1961).

F. W. STAUB et al., Heat transfer and hydraulics; the

effects of subcooled voids, NYO-3679-8 (May 1969).

L. M. Ju1 and J. A. CLARK, Bubble boundary layer and

temperature profiles for forced convection boiling in

channel flow, J. Heat Transfer 86, 50-58 (1964).

N. Zuser et al., A program of two-phase flow investi-

gation, Eleventh Quarterly Report, GEAP-5067 (Jan.

1966).



1392

15. N. ZUBER et al., A program of two-phase flow investi-
gation, Thirteenth Quarterly Report, GEAP-5203 (July
1966).

16. S. G. BANKOFF, A variable density, single fluid model for
two-phase flow with particular reference to steam-water
flow, J. Heat Transfer 82 286 (1960}

17. R. D. RicHT™yER and K. MORTON, Difference Methods
for Initial-Value Problems, 2nd edn. Interscience,
New York (1967).

18. C. F. FORREST et al., Axial void distribution in forced
convection boiling; a survey of prediction techniques
and their efficacy, Submitted for publication in the
J. Heat Transfer (1970).

APPENDIX I

Closed Form Solution to the Void Propagation Equation

In general the void and enthalpy propagation equations
must be solved simultaneously, since the vapour generation
function {I') is dependent on both the local void fraction
and liquid subcooling, and hence we must resort to numerical
techniques. However, in the special case of a thermal
equilibrium flow the vapour generation rate is defined
explicitly by the energy equation and, for this case the void
propagation equation can be solved by the method of
characteristics for both inlet flow and heat flux modulation:
these solutions have been discussed in some detail by Zuber
and Staub.t

The void propagation equation is defined as

HKay 2

+ V— =8,
ot ot 0z

(A1)

where

ice
V.= [Co + R (@J vy

A r
Q, = [1 — Co (o «fi]Q.
pl pv
The left hand side of equation (A.1) is the total derivative
of (o), hence
d{a)
T

(A.2)

which defines the void fraction variation of a fluid element
as it moves downstream. It follows that velocity of propaga-
tion is
e_y A3
=l (A.3)
If 2, and ¥, are integrable functions, equations (A.2) and
{A.3) can be readily solved in closed form.

+ N. Zuser and F. Staus, The propagation and the wave
form of the vapour volumetric concentration in boiling,
forced convection systems under oscillatory conditions, Int.
J. Heat Mass Transfer 9, 871-895 (1966).
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Heat flux modulation

Zuber and Staub have presented the solution to equation
{A.1) for a thermal equilibrium flow with C, = consiant
under the following boundary and initial conditions:

(1) heat flux
§" = gyl + esin wr)

(i) constant inlet velocity
{ili) (o) =0at Z = Oforall .

An approximate closed form solution, for case in which the
effect of the oscillations on the propagation velocity is
neglected, is presented in form of parametric equations as
follows:

™ — 18 =In(l + I'8Z*)T¥ )

N e
a* =1—exp[—-F3(t* — 13)] exp |~ (cos *r*
@

~ €os w“t;‘;ﬂ {A.5)
where “
t* = tffor z* = Oanda* =0
a* = CoAplay/p,
t* = Cyvitjz,
T = Ap 2 /pspgt;
©* = z,0/Cyv;.

At a given spatial location, the condition for a maximum
of minimum is Ju*/0r*| z2* =0 and noting that
do*/Br*| z* = Ju*/dt%| z*, equation (A.5) can be differenti-
ated to obtain the following condition for 2 mximum or
minimum

cos (w*t§ + ¢/2) =0 {A.6)

where
w*
@ = Fln(l + [Ez*).
0

Equation (A.5) is satisfied for

2n+ n
w*t3+¢/2=( 2—)vn

and therefore

ge ., (2n+ Ya
exp | — e sin ¢/2 sin — o
——— (A7)

* |max _
o =1 -

1+ Tge

The peak to peak void amplitude, from (A.7), is

2

s f
sinh [*T‘:f sin ¢/2 )
oy

1+ I'gz*

*
Aag, =

(A.8)
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We note that Ax¥, = 0 for ¢/2 = nn and therefore

2nal'§

e (A.9)
In(l + T2z

w* | Aar=0 =
From equation (A.4), the time at which a* is a maximum or
minimum is
2n+ )n
@tz ¢

I L.
i 2w

2%
Noting that the heat flux will have a maximum or minimum
value for

. @n+
Plym =50

it follows that the phase shift is given by

4

T=—
2w*

and expressed as a phase angle the above equation becomes

wt
& =_—In(l +I'*z*), A.10
2r3 n ( %) (A.10)
APPENDIX II
Finite Difference Solution for the Propagation Equation
A solution is required for the following partial differential
equation
d¢ v o

-0 (A.11)
o ez

where Vand Q are known functions of ¢, z and ¢.
We will make use of the following finite difference

relations:
a¢ n+4 ¢n+1 _ n
I:EJ,,, At
% nt4 1[ 1~ Pt a1~ ¢"m—l:|7
Z],. 2 2AZ 2AZ

where n denotes the time increment and m denotes the space
increment.

Employing the above relations we obtain the following
implicit finite difference analogue of equation (A.11)

1393

¢n+ 1 ¢n

BTERR Ty A R AR A I Y
which may be rearranged to obtain
AT 4 ¢ 4 AnRtL — B (A.12)
where
- VoAt
" 4AZ
By = QAL + & — AL(Psr — dnoi)

It can be shown that an implicit solution of the form of
(A.12) is inherently stable, i.e. numerical disturbances do not
grow without bound with increasing time but decay for all
space and time step sizes.

Given the following initial conditions,

Dem=012. ..M
()¢nn=012... N.

Employing equation (A.12) we can write the following
set of M linear equations

g1t + Argyt
S AR+ g1+ A

=B - 4y
=B

A+l _
M+1 =

— Al "“1 + @3+ Al By.

To terminate the calculations at m = M we impose the
following constant slope exit condition

a¢)" T
I
which becomes in finite difference form
Srer = 2 — by
Substitution in the Mth difference equation yields
—AydM L+ 12(1 + 24%) 07 = 12Q%,At
— AM(@h — Db 1) + 12805

We now have M equations in M unknowns which can be
written in the following matrix form

n=0,1,2,...,N

1 A,
-4, 1 A
-4, 1 A,

_AM—I

— Ay

n —_ n+1 — n
T (o 7 [a]
¢2 BZ
¢3 B3
1 AM—I ¢M—1 BM—-I
14+ 24, ,
2 _¢M | _BM _
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where A A;
Ci=1+ P=23....M-1
B, = B, — 4145 Cies
By = 12Q5,At — Al — dh—y) + 1/2¢%.
. Ay- 1Ay
CM = ]’2(1 + 2AM) + *‘Cvg
Employing the Gaussian elimination technique we arrive M-t
at the following solution algorithm for the above set of E _B
linear equations !
Ei_ 4
by = En/Cas Ei=Bit i=23....M-]
i1
¢ = (E; — ¢4 BYC; i=1L2....M-1
Ey_,A
where Ey = By + ———"
CM* 1
C, =1

UNE TECHNIQUE GENERALE POUR EVALUER LES DISTRIBUTIONS DE VIDE DANS
LA CONVECTION FORCEE BIPHASIQUE INSTATIONNAIRE

Résumé—On présente une technique analytique pour 1’évaluation des distributions instationnaires de
vide et d’enthalpie dans la convection forcée d’un écoulement d’eau bouillante. L’analyse est basée sur
la forme résultant d'une moyenne dans la section des équations de conservation de masse et d’energie.
Des relations auxiliaires basées sur des hypothéses de condition locale sont développées pour décrire: (1)
I'effet des profils non unitormes de vide et de vitesse et {2) le taux de vapeur créée. Des estimations de distri-
butions de vide pour un écoulement axial stationnaire sont montrées &tre en bon accord avec les expériences
disponibles, ainsi que I’estimation de I'amplitude d’oscillation de vide et du déphasage du flux thermique
modulé.

EINE ALLGEMEINE METHODE ZUR BESTIMMUNG VON DAMPFANTEILEN BEI
INSTATIONARER, ERZWUNGENER ZWEIPHASENSTROMUNG

Zusammenfassung—FEs wird eine analytische Methode angegeben zur Bestimmung von instationdren
Dampf- und Enthalpieverteilungen bei erzwungener Konvektion. Die Berechnung stiitzt sich auf die {iber
den Querschnitt gemittelte Form der Massen- und der Energieerhaltungsgleichungen. Hilfsbeziehungen
fur lokale Zustandshypothese wurden entwickelt zur Beschreibung (1) des Einflusses ungleichmassiger
Dampfanteil- und Geschwindigkeitsverteilung und (2) der Dampferzeugungsrate. Voraussagen iiber die
achsiale Dampfverteilung vei stetiger Stromung zeigten sich in guter Ubereinstimmung mit den verfiigbaren
Daten. wic auch die Bestimmung der Dampfanteil-Schwankungs-Amplitude und Phasenverschicbung
fiur modulierte Wirmestromwerte.

OBIIAA METOJIMKA PACUETA PACHPEJ[EJEHUS [TAPOBOMN
®A3BI [IPM HECTALIMOHAPHON BBLIHYHJIEHHON KOHBEKIUU B
NBYX®AZHON KUIKOCTU

Ansorausa—IIpuBoauTca MeTORMKA AHAIUTHMYECKOI'O pacueTa HeCTAUMOHAPHOrO pacnpepe-
neHusa 00BEMHOTO MAPOCOEPHAHUA N SHTAJBIUMU IIPU KUIEHUM BOABL NPU BHIHYMAEHHOH
HOHBEKILIMK, AHanu3 OCHOBAH HA YpaBHeHUAX COXPDAHEHWHA JHEeprum u MacChl, OCPeAHEeHBIX
10 MONEePEeYHOMY CeYeHMIo. BBIBefleHLI BCIIOMOTaTeJbHbE COOTHOWEHUA HA 0ase IMIoTE3bl ¢
JIOKAJILHEIM YCJIOBHEM AJA onucaHuA (1) BIMAHMA HeONHOPOAHBIX npoduieil pacipenenenus
00BEMHOTO TAPOCOEPHAHUA 1 CKOPOCTU U (2) ckopocTu mapoobpasosanud. [lokasano, 4To
pesyabpTaThl PacyeTOB AKCUAJIBHOTO paclpefeleHuA OOBEeMHOTO MNAPOCOAEPMAHUA HpU
CTAllMOHAPHOM TEYeHWN XOpPOIUIO COTJACYIOTCA C HMEIOMMMHCH [AHHBIMU, TAK JKe KaKk M
[AHHblE PACYETOB AMIUIUTYAH KojeGaHMH Napocojep:KaHUA U cKopocTu ¢asel B caydae
MOJLYJIMPOBAHHOTO TeNI0BOTO IOTOKA.



